VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Advanced Suppl. Examinations, Aug./Sept.-2023 Design and Analysis of Algorithms

(Common to CSE & AIML)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

0 N	$Part-A (10 \times 2 = 20 Marks)$				
Q. No.	Stem of the question	M	L	CO	PO
1.	Prove or disprove the statement: $3^{n+3} = O(3^n)$.	2	3	1	1,2,3
2.	State master's theorem.	2	1	1	1,2
3.	Give a recurrence for the running time of Strassen's matrix multiplication algorithm to multiply two square matrices of order n , where $n=2^k$, for some integer $k \ge 0$.	2	1	2	1,2
4.	Give two examples for optimization problems.	2	1	2	1,2
5.	For what type of optimization problems dynamic programming is more suitable?	2	2	3	1,2
6.	List out biconnected components of the following graph. B C D	2	3	3	1,2,3
	A G B E				
7.	Determine chromatic number of the following graph.	2	3	4	1,2,3
8.	Determine whether the following graph has a Hamiltonian cycle.	2	3	4	1,2,3
	7 2 10 10 10 10 10 10 10 10 10 10 10 10 10				
9.	What is intractable problem? Give an example.	2			
0. I	Define set cover problem and give an example.	2	2	5	1,2
	Broampie.	2	1	5	1,2

				-		
		$Part-B (5 \times 8 = 40 Marks)$		e trains		Ç-
11.	a)	Define an algorithm. What are the criteria an algorithm must satisfy? Explain briefly.	5	1	1	1,2
	b)	For an odd integer n , let $T(n)$ be the number of times "Self-motivation is the best form of motivation for oneself" is printed in the following algorithm segment. Find $T(n)$.	3	1	1	1,2
		for $(i = 1; i \le n; i = i++)$ do		1		
		for $(j=1; j \le n; j=j+2)$ do print" Self-motivation is the best form of motivation				
		for oneself";				
12.	a)	Derive a recurrence for the worst-case running time of binary search and represent it's worst-case running time using theta notation.	3	3	2	1,2,
	b)	Solve the following instance of single-source shortest paths problem with vertex 'a' as source by applying a greedy algorithm.	5	3	2	1,2,:
		(b) -3 (c)				
	2	2				
				JUGAL	1012	
	£ 0					
		2 3 2 3				
	Y	(d) - (g)				
13.	a)	Solve the following instance of 0/1 knapsack problem by applying your algorithm.	6	3	3	1,2,
		Item No Weight (Kg) Profit (Rs)				
		1 2 4				
		2 6 3				
		3 7 2				
		4 3 4				
		Knapsack capacity (W) = 8 Kg				
1	b)	What is longest common subsequence problem? Give an example.	2	2	3	1,2
14.	a)	How many solutions does the 4-queens problem have? Justify your answer.	2	2	4	1,2
1	b)	Define Traveling Salesperson Problem (TSP). Explain briefly the main steps in a branch-and-bound solution to the TSP problem.	6	2	4	1,2
15.	a)	Consider the following Clique Decision Problem (CDP). Input: An undirected graphs $G(V, E)$ and an integer k .	4	3	5	1,2,
		Question: Does there exist a clique of size at least k in G ?				
		Show that CDP is NP-hard by showing that CNF-Satisfiability problem reduces to CDP.				

4	refine the following terms.	4	2	5	1,2
	1). Vertex cover				
E	ii) Matching				
	iii) Maximal matching				
	iv) Approximation ratio				
16. a)	Give a formal definition of theta notation. Prove or disprove the following: $5n^2+8n-3=\Theta(n^2)$.	4	3	1	1,2,3
b)	Sort the keys 550, 550, 580, 530, 540, 530, 520 in non-decreasing order by applying quick sort.	4	3	2	1,2,3
17.	Answer any <i>two</i> of the following:				
a)	Define Binary Search Tree (BST). List out all possible BSTs possible with the keys 10, 20 and 30. Also state Optimal BST problem.	4	3	3	1,2,3
b)	Explain the general method of backtracking. Give two examples for problems with backtracking solution.	4	2	4	1,2
c)	Define the following complexity classes and give two examples for each.	4	2	5	1,2
	i). NP			-	
	ii) NP-hard				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level - 2	34%
iii)	Blooms Taxonomy Level - 3 & 4	46%
